top of page

Now I am Enough Old for Remembering the Past 

 

TANAKA Akio
                                      

Recently I read Susan Sontag's WHERE THE STRESS FALLS, 2001. The impression is a little different with the other books. 
I was never the good reader of her, but her existence was always strong and had glittered. 
The time was Sixties that contained the infinite things in it. 
Now I am enough old for remembering the time. 
She wrote a fine essay on the time, Thirty Years Later ... , 1996. The pages are short but sufficient to describe the time that was infinite and endless.
 If her life was able to be shine, while my Sixties was always under the tiny dim light. 
At the place where I was, the long view never could be seen. I never thought on the things as I was very coward and was fluttered even at the very tiny event of the time. I was infirm and timidity.
What I could do at that time was read or turned pages of the text books of some foreign languages. 
How little and shallow heart I had, pitiable and poor existence. Probably till now.

Reference
Under the Dim Light


Tokyo
27 September 2012
Sekinan Research Field of Language

 

 

The Days of von Neumann Algebra 

 

viz. The cited papers' texts are shown at the blog site SRFL News' January 2015 blogs.

 

TANAKA Akio

 

1.

My study's turning point from intuitive essay to mathematical writing was at the days of learning von Neumann Algebra, that was written by four parts from von Neumann Algebra 1 to von Neumann Algebra 4. The days are about between 2006 and 2008, when I was thinking about switching over from intuitive to algebraic writing. The remarkable results of writing these papers were what the relation between infinity and finiteness in language was first able to clearly describe. Two papers of von Neumann 2. Property Infinite and Purely Infinite, were the trial to the hard theme of infinity in language.The contents' titles are the following.

 

von Neumann Algebra 

On Infinity of Language

1 von Neumann Algebra 1

2 von Neumann Algebra 2

3 von Neumann Algebra 3

4 von Neumann Algebra 4

References

1 Algebraic Linguistics 

2 Distance Theory Algebraically Supplemented

3 Noncommutative Distance Theory

4 Clifford Algebra5 Kac-Moody Lie Algebra6 Operator Algebra

..................................................................................................................................

 

2.

The papers of von Neumann Algebra and References are the next.

 

von Neumann Algebra 1 

1 Measure

2 Tensor Product

3 Compact Operator

 

von Neumann Algebra 2

1 Generation Theorem

 

von Neumann Algebra 3

1 Properly Infinite

2 Purely Infinite

 

von Neumann Algebra 4

1 Tomita's Fundamental Theorem

2 Borchers' Theorem

 

Algebraic Linguistics<Being grateful to the mathematical pioneers>

On language universals, group theory is considered to be hopeful by its conciseness of expression. Especially the way from commutative ring to scheme theory is helpful to resolve the problems a step or two.

 

1 Linguistic Premise

2 Linguistic Note

3 Linguistic Conjecture

4 Linguistic Focus5 Linguistic Result 

 

Distance Theory Algebraically Supplemented

Algebraic Note1 Ring2 Polydisk <Bridge between Ring and Brane>3 Homology Group4 Algebraic cycle

Preparatory Consideration1 Distance2 Space <9th For KARCEVSKIJ Sergej>3 Point

Brane Simplified Model1 Bend2 Distance <Direct Succession of Distance Theory>3 S3 and Hoph Map 

 

Noncommutative Distance Theory

Note1 Groupoid

2 C*-Algebra

3 Point Space

4 Atiyah’s Axiomatic System

5 Kontsevich Invariant

[References]

Conjecture and Result

1 Sentence versus Word 

2 Deep Fissure between Word and Sentence

 

Clifford Algebra

Note

1 From Super Space to Quantization

2 Anti-automorphism

3 Anti-self-dual Form

4 Dirac Operator

5 TOMONAGA's Super Multi-time Theory

6 Periodicity

7 Creation Operator and Annihilation Operator

Conjecture

1 Meaning Product 

 

Kac-Moody Lie Algebra 

Note

1 Kac-Moody Lie Algebra

2 Quantum Group

Conjecture

1 Finiteness in Infinity on Language

 

Operator Algebra 

Note

1 Differential Operator and Symbol

3 Self-adjoint and Symmetry

4 Frame Operator

Conjecture

1 Order of Word

2 Grammar3 Recognition

....................................................................................................................................

 

3.

After writing von Neumann Algebra 1 - 4,  I successively wrote the next.

 

Functional Analysis 

Reversion Analysis Theory 

Holomorphic Meaning Theory 

Stochastic Meaning Theory

 

Especially Stochastic Meaning Theory clearly showed me the relationship between mathematics and physics, for example Brownian motion in language. After this theory I really entered the algebraic geometrical writing by Complex manifold deformation Theory. The papers are shown at Zoho site's sekinanlogos.

 

  • sekinanlogos

 

Complex Manifold Deformation Theory

  • Distance of Word

  • Reflec bsp;of Word 

  • Uniqueness of Word

  • Amplitude of Meaning Minimum  

  • Time of Word

  • Orbit of Word 

  • Understandability of Language     

  • Topological Group Language Theory

  • Boundary of Words

 

Symplectic Language

  • Symplectic Topological Existence Theorem 

  • Gromov-Witten Invariantational Curve

  • Mirror Symmetry Conjecture on Rational Curve   ​ 

  • Isomorphism of Map Sequence  

  • Homological Mirror Symmetry Conjecture by KONTSEVICH 

  • Structure of Meaning

 

Floer Homology Language

  • Potential of Language       

  • Supersymmetric Harmonic Oscillator 

  • Grothendieck Group   â€‹ 

  • Reversibility of language

  • Homology Generation of Language 

  • Homology Structure of word 

  • Quantization of Language

  • Discreteness of Language

.....................................................................................................................................

 

4.

The learning from von Neumann Algebra 1 ended for a while at Floer Homology Language,  where I first got trial papers on language's quantisation or discreteness. The next step was a little apart from von Neumann algebra or one more development of algebra viz. arithmetic geometry.

#Here ends the paper.## The cited papers' texts are also shown at this site.

 

vide: The days between von Neumann Algebra and Complex Manifold Deformation Theory

 

 

Tokyo

3 December 2015

SIL

 

bottom of page